On Jumping Densities of Hypergraphs
نویسنده
چکیده
Let r ≥ 2 be an integer. The real number α ∈ [0, 1] is a jump for rif there exists c > 0 such that for every positive and every integer m ≥ r, every r-uniform graph with n > n 0 (, m) vertices andat least (α +) n r edges contains asubgraph with m vertices and at least (α + c) m r edges. A fundamental result in extremal graph theory due to Erd˝ os and Stone implies that every number in [0, 1) is a jump for r = 2. Erd˝ os also showed that every number in [0, r!/r r) is a jump for r ≥ 3. However, not every number in [0, 1) is a jump for r ≥ 3. In fact, Frankl and Rödl showed the existence of non-jumps for r ≥ 3. In this talk, we describe more recent results for r ≥ 3.
منابع مشابه
Independence densities of hypergraphs
We consider the number of independent sets in hypergraphs, which allows us to define the independence density of countable hypergraphs. Hypergraph independence densities include a broad family of densities over graphs and relational structures, such as F -free densities of graphs for a given graph F. In the case of kuniform hypergraphs, we prove that the independence density is always rational....
متن کامل1 - Introduction to hypergraphs
We begin with an introduction to hypergraphs, which gives a taste of different representations of hypergraphs, linear hypergraphs, and Turán-type problems, including existence of Turán densities and classification of zero Turán densities. Thereafter we delve deeper into some of the classical theorems of hypergraph theory, including various theorems on intersecting families such as Sperner’s The...
متن کاملPacking random graphs and hypergraphs
We determine to within a constant factor the threshold for the property that two random k-uniform hypergraphs with edge probability p have an edge-disjoint packing into the same vertex set. More generally, we allow the hypergraphs to have different densities. In the graph case, we prove a stronger result, on packing a random graph with a fixed graph.
متن کاملON THE NORMALITY OF t-CAYLEY HYPERGRAPHS OF ABELIAN GROUPS
A t-Cayley hypergraph X = t-Cay(G; S) is called normal for a finite group G, if the right regular representationR(G) of G is normal in the full automorphism group Aut(X) of X. In this paper, we investigate the normality of t-Cayley hypergraphs of abelian groups, where S < 4.
متن کاملTurán Problems on Non-Uniform Hypergraphs
A non-uniform hypergraph H = (V,E) consists of a vertex set V and an edge set E ⊆ 2V ; the edges in E are not required to all have the same cardinality. The set of all cardinalities of edges in H is denoted by R(H), the set of edge types. For a fixed hypergraph H, the Turán density π(H) is defined to be limn→∞maxGn hn(Gn), where the maximum is taken over all H-free hypergraphs Gn on n vertices ...
متن کاملDirected domination in oriented hypergraphs
ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Graphs and Combinatorics
دوره 25 شماره
صفحات -
تاریخ انتشار 2009